First Monte Carlo simulation study of Galeras volcano structure using muon tomography

dc.contributor.affiliationDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationUniversidad de Nariño, Pasto, Colombiaspa
dc.contributor.affiliationIIT Center for Accelerator and Particle Physics, Illinois Institute of Technology, Chicago, IL, United Statesspa
dc.contributor.affiliationBetancourt, J., Universidad de Nariño, Pasto, Colombiaspa
dc.contributor.affiliationCaicedo, D.A.M., IIT Center for Accelerator and Particle Physics, Illinois Institute of Technology, Chicago, IL, United Statesspa
dc.contributor.authorTapia A.
dc.contributor.authorDueñas D.
dc.contributor.authorRodriguez J.
dc.contributor.authorBetancourt J.
dc.contributor.authorCaicedo D.A.M.
dc.date.accessioned2017-12-19T19:36:52Z
dc.date.available2017-12-19T19:36:52Z
dc.date.issued2016
dc.description.abstractMuon radiography is based on the observation of the absorption of muons in matter, as the ordinary radiography does by using X-rays. The interaction of cosmic rays with the atmosphere produce Extensive Air Showers (EAS), which provide abundant source of muons. These particles can be used for various applications of muon radiography, in particular to study the internal structure of different volcanoes edifice. We will focus on Galeras volcano located 9 km from Pasto city (Colombia). In this work we present the first study of the muon lateral distribution at Pasto altitude (4276 m a.s.l.) and a preliminary simulation the volcanic cone using GEANT4[1]. For the interaction of the cosmic rays with the atmosphere we have used CORSIKA 74004[2] software with an atmosphere tropical model and QGSJETII-04[3] as hadronic model for the high energies and GHEISHA2002d[4] for low energies. The analysis considers two different primary particle (proton and iron), four zenith angles (0°, 30°, 45° and 60°) with energies values of 5, 10 and 100 TeV. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).eng
dc.identifier.instnameinstname:Universidad de Medellínspa
dc.identifier.issn18248039
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.urihttp://hdl.handle.net/11407/4378
dc.language.isoeng
dc.publisherProceedings of Science (PoS)spa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.relation.ispartofProceedings of Sciencespa
dc.relation.ispartofProceedings of Science Volume Part F128556, 2016spa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85025838456&partnerID=40&md5=43d3ca49be84fafa9917f32569f6cefc
dc.relation.referencesAgostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P.,. . . Zschiesche, D. (2003). GEANT4 - A simulation toolkit. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. doi:10.1016/S0168-9002(03)01368-8spa
dc.relation.referencesAllison, J., Amako, K., Apostolakis, J., Araujo, H., Dubois, P. A., Asai, M., . . . Peirgentili, M. (2006). Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53(1), 270-278. doi:10.1109/TNS.2006.869826spa
dc.relation.referencesFesefeldt, H. C. (1985). Technical Report PITHA, 85-102.spa
dc.relation.referencesGreisen, K. (1960). Ann.Rev.Nucl.Sci., 10, 63-108.spa
dc.relation.referencesHeck, D. (1998). CORSIKA, 6019.spa
dc.relation.referencesKamata, K., & Nishimura, J. (1958). The lateral and the angular structure functions of electron showers. Prog.Theor.Phys.Suppl., 6. Ostapchenko, S. (2011). Monte carlo treatment of hadronic interactions in enhanced pomeron scheme: QGSJET-II model. Physical Review D - Particles, Fields, Gravitation and Cosmology, 83(1) doi:10.1103/PhysRevD.83.014018spa
dc.relation.referencesTanaka, H. K., Kusagaya, T., & Shinohara, H. (2014). Radiographic visualization of magma dynamics in an erupting volcano. Nature Communications, 5, 3381. doi:10.1038/ncomms4381spa
dc.relation.referencesTapia, A. (2015). AAA Workshop, 7, 237-240.spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceScopusspa
dc.subject.proposalCharged particleseng
dc.subject.proposalCosmologyeng
dc.subject.proposalEnterprise softwareeng
dc.subject.proposalHigh energy physicseng
dc.subject.proposalMonte Carlo methodseng
dc.subject.proposalRadiographyeng
dc.subject.proposalTellurium compoundseng
dc.subject.proposalVolcanoeseng
dc.subject.proposalExtensive air showerseng
dc.subject.proposalGaleras volcanoseng
dc.subject.proposalHadronic modelseng
dc.subject.proposalInternal structureeng
dc.subject.proposalLateral distributionseng
dc.subject.proposalMuon radiographieseng
dc.subject.proposalPrimary particleseng
dc.subject.proposalVolcanic coneseng
dc.subject.proposalCosmic rayseng
dc.titleFirst Monte Carlo simulation study of Galeras volcano structure using muon tomographyspa
dc.typeConference Paper
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Articulo.html
Tamaño:
589 B
Formato:
Hypertext Markup Language

Colecciones